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Abstract

A theoretical study on the natural frequencies and the mode shapes of perforated beams in contact with an ideal liquid is

presented. In the theory part, it is assumed that the beams are simply supported at both ends and the ideal liquid is in

contact with the lower surface of the beams. Holes with an identical configuration are equally spaced in the beams and

three specific patterns of square, rotated square and circular holes are considered. Along the contact surface between the

beam and the liquid, the compatibility requirement is applied for the liquid–structure interaction and the Rayleigh–Ritz

method is used to calculate the eigenvalues and eigenvectors of the system. The proposed theoretical method for the beams

coupled with the liquid is verified by observing a good agreement with the three-dimensional finite element analysis results.

In order to evaluate the dynamic characteristics of the liquid-coupled beam, the effects of the hole size in the beams and the

pattern of holes on the natural frequencies and the mode shapes are investigated. Additionally the effects of the liquid

depth on the natural frequency is investigated and compared with the solid beam case.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A structure, which is constructed by repeating a basic geometric unit to form a regular pattern, is known as
a periodic structure. Periodic structures can be analyzed most efficiently when the periodicity is taken
into account. This allows for the behavior of the complete structure to be determined through an analysis
of the basic unit. The substitute continuum approach is based on the global behavior of the structure by
using the effective Poisson’s ratio and the effective modulus of the elasticity. One of the periodic structures
is a perforated structure, which has a number of identical circular holes or square holes with a regular
pattern.

The perforated plates with a number of circular holes are used not only in commercial nuclear power plants
but also in heat exchangers. However, it is very difficult to estimate the dynamic characteristics of such a
perforated plate. Moreover, the dynamic behavior of perforated plates in contact with a liquid is very
complicated due to the fluid–structure interaction. Although, powerful numerical tools such as the finite
element method or the boundary element method make numerical solutions to a simple fluid–structure
interaction problem possible, the use of these methods in perforated structures still requires enormous
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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amounts of time for a modeling and computation. In particular, the coupling between a structure and a liquid
in a finite element modeling requires elaborate modeling techniques and an understanding of the physical
phenomena in the fluid–structure interaction.

The previous studies on perforated plates have been focused on the stress distribution and the deformation
based on the effective elastic constants such as the effective Young’s modulus, the effective Poisson’s ratio and
the effective mass density [1–5]. In these studies, the theories and observations were based on the static
deformation and stress calculation of the perforated plates. There have been several applications of the
effective elastic constants for perforated plates. De Santo [6] carried out an experimental modal analysis of
perforated circular plates. However, it was inappropriate to use the equivalent elastic properties since the holes
in the plates were too large when compared with the plate dimensions. Burgemeister and Hansen [7] suggested
a formula to estimate the effective resonance frequencies of rectangular plates in air, based on finite element
analysis and experiments. Jeong et al. [8] carried out an experimental modal analysis for perforated plates in
contact with a fluid. They showed that the natural frequencies of the clamped perforated plates in air could be
predicted by using the equivalent elastic properties. Sinha et al. [9] attempted to estimate the added mass of
submerged perforated plates by conducting a modal test and finite element analysis.

However, the theoretical method based on the averaged elastic constants can produce some deviations in the
higher vibration modes of perforated plates. Especially, when the perforated plates have only a few holes, the
equivalent elastic constant is not effective any more; therefore an application of this method will be limited.
Although the holes are distributed evenly in the plates, the effective elastic constants of the perforated plates,
strictly speaking, will be a function of the mode shapes.

Since very few studies on the theoretical dynamic analysis of a liquid-coupled perforated beam have been
undertaken, this paper will suggest a theoretical method to estimate the natural frequencies and mode shapes
of perforated beams not only in air but also in contact with a liquid. This method can be effectively used to
verify the finite element dynamic analyses such as the seismic analysis and the postulated pipe break analysis of
the reactor internals of a nuclear power plant.
2. Theoretical formulation

2.1. Distributed properties of elastic perforated beams

Liquid-contacting beams having several identical holes at the same distance are illustrated in Fig. 1.
The simply supported beam has a total length L, thickness h, width b, diameter of the circular holes d, or
width of the square holes s. The beams are composed of N element regions with the width of a. Since the
square holes of the beam are equally spaced, the distributed mass in the nth element region of a beam can be
written as

vðxÞ ¼

rb; napxonaþ a1;

rðb� sÞ; naþ a1pxon aþ a2;

rb; naþ a2pxoðnþ 1Þa;

2
64 (1)

where a1 ¼ ða� sÞ=2, a2 ¼ ðaþ sÞ=2 and r is the density of the beam. Similarly, the area moment of inertia
distribution of the nth element region of the perforated beam becomes

IðxÞ ¼

bh3=12; napxonaþ a1;

ðb� sÞh3=12; naþ a1pxonaþ a2;

bh3=12; naþ a2pxoðnþ 1Þa:

2
64 (2)

The rotated square holes of the beam have identical dimensions and are located in a row with an
equal space, therefore the distributed mass and the moment of inertia distributions in the nth element region
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Fig. 1. Perforated beams in contact with a liquid: (a) perforated beam with square holes, (b) perforated beam with rotated square holes

and (c) perforated beam with circular holes.
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can be given as

vðxÞ ¼

rb; napxonaþ a3;

rðbþ 2naþ 2a3 � 2xÞ; naþ a3pxonaþ a=2;

rðb� 2na� 2a4 þ 2xÞ; naþ a=2pxonaþ a4;

rb; naþ a4pxoðnþ 1Þa;

2
66664 (3)

IðxÞ ¼

bh3=12; napxonaþ a3;

ðbþ 2naþ 2a3 � 2xÞh3=12; naþ a3pxonaþ a=2;

ðb� 2na� 2a4 þ 2xÞh3=12; naþ a=2pxonaþ a4;

bh3=12; naþ a4=2pxoðnþ 1Þa;

2
66664 (4)
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where a3 ¼ ða�
ffiffiffi
2
p

sÞ=2 and a4 ¼ ðaþ
ffiffiffi
2
p

sÞ=2. For the perforated beam with circular holes, the distributed
mass and the moment of inertia distribution in the nth element region of the beam can be obtained as follows:

vðxÞ ¼

rb; napxonaþ a5;

r b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
� ð2x� 2na� aÞ2

q� �
; naþ a5pxonaþ a6;

rb; naþ a6pxoðnþ 1Þa;

2
6664 (5)

I ðxÞ ¼

bh3=12; napxonaþ a5;

b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
� ð2x� 2na� aÞ2

q� �
h3=12; naþ a5pxonaþ a6;

bh3=12; naþ a6pxoðnþ 1Þa;

2
66664 (6)

where a5 ¼ ða2dÞ=2 and a6 ¼ ðaþ dÞ=2.
2.2. Rayleigh– Ritz method for perforated beams in air

Each dry mode shape in a bending can be approximated by a combination of a finite number of admissible
functions, Wm(x) and appropriate unknown coefficients qm. The choice of the admissible functions is very
important to simplify the calculations and to guarantee a convergence to the actual solution. The transverse
dynamic displacement due to a bending moment, w, can be assumed in the form of

wðx; tÞ ¼
XM
m¼1

qmW mðxÞexpðiotÞ, (7)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and o is the circular natural frequency of the beams. When we consider the geometric
boundary conditions at x ¼ 0 and L, the bending moment and the displacement at both support ends must be
zero simultaneously for the simply supported boundary condition, that is

MðxÞ
��
x¼0
¼W mðxÞ

��
x¼0
¼MðxÞ

��
x¼L
¼W mðxÞ

��
x¼L
¼ 0. (8)

The admissible functions for the bending mode can be defined by

W mðxÞ ¼ sin
mpx

L

� �
. (9)

These simple functions are a set of dry modal functions of a uniform beam which satisfies the geometric and
natural boundary conditions of Eq. (8).

The Rayleigh–Ritz method is introduced to obtain the natural frequencies and mode shapes of the
perforated beams in air. A sufficiently large number of terms, M, must be considered and a vector q of the
unknown parameters and a vector of admissible functions W are introduced in order to perform a numerical
calculation

q ¼ fq1 q2 q3 � � � qMg
T, (10)

WðxÞ ¼ W 1 W 2 W 3 � � � W Mf gT. (11)

Now, it is necessary to know the reference kinetic energy of the beams to calculate the natural frequencies in
air. The reference kinetic energy of a simply supported perforated beam can be computed by using the
orthogonality of modal displacements:

T�b ¼
1

2

Z L

0

vðxÞqTWðxÞTWðxÞqdx ¼
1

2
qTZq, (12)
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where Z is an M�M symmetric matrix for the beam with square holes and is given as

Zjk ¼ h
XN�1
n¼0

Z ðnþ1Þa
na

vðxÞW jðxÞW kðxÞdx ¼ rhUjk ðj; k ¼ 1; 2; . . .MÞ, (13)

where

Ujk ¼ djkb

Z L

0

fW kðxÞg
2 dx� s

XN�1
n¼0

Z naþa2

naþa1

W jðxÞW kðxÞdx (14)

and djk is the Kronecker delta. If j ¼ k

Ukk ¼
bL

2
� s

XN�1
n¼0

s

2
�

L

2pk

� �
cos

kpa

L

� �
sin

kps

L

� �� �
(15)

for jak

Ujk ¼
bL

2
djk �

2sL

p

XN�1
n¼0

cos
ðj � kÞðnþ 1=2Þap

L

� �
sin
ðj � kÞsp

2L

� �� �
k

j2 � k2

� �
. (16)

For the beam with rotated square holes, the matrix U will become

Ujk ¼ djkb

Z L

0

fW kðxÞg
2 dx

� 2
XN�1
n¼0

Z naþa=2

naþa3

ðx� na� a3ÞW jðxÞW kðxÞdxþ

Z naþa4

naþa=2
ða4 þ na� xÞW jðxÞW kðxÞdx

( )
; ð17Þ

and can be obtained by an integration in a closed form. For the beam with circular holes, the matrix U will be
given by

Ujk ¼ djkb

Z L

0

fW kðxÞg
2 dx�

XN�1
n¼0

Z naþa6

naþa5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
� 4ðx� na� a=2Þ2

q
W jðxÞW kðxÞdx. (18)

The maximum strain energy of the perforated beam can be computed by integrating the derivative of the
admissible modal functions as

V b ¼
1

2

Z L

0

EIðxÞqT
q2WT

qx2

� �
q2W
qx2

� �
qdx ¼

1

2
qTSq, (19)

where E is the modulus of the elasticity of the beams. By inserting the derivatives of the admissible modal
functions into Eq. (19), the maximum strain energy of the perforated beam with square holes is obtained by

Sjk ¼ E
XN�1
n¼0

Z ðnþ1Þa
na

IðxÞfW jðxÞ
00
gfW kðxÞ

00
gdx

¼
Eh3

12
bdjk

Z L

0

fW kðxÞ
00
g2 dx� s

XN�1
n¼0

Z naþa2

naþa1

W jðxÞ
00

	 

fW kðxÞ

00
gdx

" #
, ð20Þ

where the symbol 00 has been used instead of d2/dx2. By inserting Eq. (9) into Eq. (20), it gives

Sjk ¼
Eh3k2j2p4

12L4
Ujk, (21)

Similary, the matrix can be obtained for the beams with the rotated square holes or with the circular holes in
the same manner as Eq. (21). Since the Rayleigh quotient for the beam vibration in air is given as V b=T�b, the
matrix equation of an eigenvalue problem can be obtained by minimizing the Rayleigh quotient with respect
to the unknown parameters q:

Sq� o2Zq ¼ f0g. (22)

From Eq. (22), the natural frequencies and the mode shapes of the perforated beams in air can be obtained.
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2.3. Method of a solution for a perforated beam in contact with a liquid

The oscillatory motion of an incompressible and inviscid liquid in contact with a perforated beam can be
described by using the velocity potential. It is assumed that the ideal liquid is bounded at the lower bottom by
a rigid surface and both ends of a liquid in the x direction have a zero pressure (at x ¼ 0, L, see Fig. 1). The
liquid surface at the holes is also assumed to be bounded. In fact, the liquid domain is assumed to be two
dimensional, and the liquid motion is neglected. This is obviously an approximation. In an actual condition,
the liquid at the holes can present: either a free surface where a sloshing is possible, or it can be constrained by
a cylindrical surface in the case of pipes which are inserted into the holes and immersed into the liquid. The
liquid movement induced by the beam vibration should satisfy the Laplace equation

r2Fðx; z; tÞ ¼ 0. (23)

When the harmonic time function is assumed, the velocity function F can be separated with respect to z in
terms of the displacement potential function f(x) as follows:

Fðx; z; tÞ ¼ iofðx; zÞexpðiotÞ ¼ iofðxÞf ðzÞexpðiotÞ. (24)

Insertion of Eq. (24) into Eq. (23) gives the two ordinary differential equations

fðxÞ;xx

fðxÞ
¼ �

f ðzÞ;zz

f ðzÞ
¼

mp
L

� �2
. (25)

Therefore, the solution of Eq. (25) can be written by

fðx; zÞ ¼
XM
m¼1

xm sin
mpx

L

� �
cosh

mpz

L

� �
: (26)

As the liquid displacement and the displacement of the beam must be equal in the case of an absence of a
cavitation in the transverse direction at the interface between the liquid and the beam, the compatibility
condition at the liquid interface with the beam yields

wðxÞ ¼
qfðx; zÞ

qz

����
z¼H

. (27)

Substitution of Eqs. (7), (9) and (26) into Eq. (27) gives the following equation:

XM
m¼1

qm sin
mpx

L

� �
¼ �

XM
m¼1

xm

mp
L

� �
sin

mpx

L

� �
sinh

mpH

L

� �
: (28)

From Eq. (28), the unknown coefficient of the liquid is given as

xm ¼
�L

ðmpÞsinh mpH=L
� � qm. (29)

Now, it is necessary to evaluate the reference kinetic energies of the liquid to calculate the natural
frequencies of the perforated beam in contact with a liquid. The reference kinetic energy of the liquid can be
evaluated from its boundary motion [10] as follows:

T�L ¼ �
1
2
r0

Z L

0

ðqfðx;HÞ=qxÞfðx;HÞdx, (30)

where r0 is the mass density of a liquid. To reduce Eq. (30), we insert Eq. (26), (29) into Eq. (30). Therefore the
reference kinetic energy of the liquid is written as

T�L ¼ �
1
2
r0

Z L

0

wðxÞfðx;HÞdx ¼ 1
2
qTGq, (31)
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where

Gjk ¼ r0Ujk

kp
L

� �
tanh

kpH

L

� � ��1
. (32)

The correspondence between the reference kinetic energy of each mode multiplied by its square circular
frequency and the maximum potential energy of the same mode is used to find the natural frequencies of the
liquid-coupled system. The Rayleigh quotient for the beam in contact with a liquid is given as V b=ðT

�
b þ T�LÞ.

By minimizing the Rayleigh quotient with respect to the unknown parameters q, the following Galerkin
equation can be obtained

Sq� o2ðZþGÞq ¼ f0g. (33)

The natural frequencies o of the perforated beams in contact with a liquid can be calculated by Eq. (33)
given an eigenvalue problem.

3. Example and discussion

3.1. Verification of the analytical method

On the basis of the preceding analysis, the determinant of Eqs. (22) and (33) is numerically solved to find the
natural frequencies of the perforated beams with the simply supported boundary condition and the
eigenvectors are obtained for the mode shapes by using a mathematical commercial software
MathCAD(2000). The number of terms M included in the expansion is set at 100, which gives a converged
solution. In order to check the validity and accuracy of the results from the theoretical study, an example is
carried out for the liquid-coupled system and the results are compared with the three-dimensional finite
elements method analysis results. In the liquid-coupled system as shown in Fig. 2, the thin aluminum beams
have a total length of L ¼ 960mm, a width of b ¼ 120mm, and a wall thickness of h ¼ 5mm. The width of the
120

8X φ 78.9865
960

960

120

960

120

70

70

UNIT:mm

Fig. 2. Example model of the perforated beams.
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square and the rotated square holes of the beams is s ¼ 70mm, and the diameter of circular holes is
d ¼ 78.9865mm. Therefore the area of the circular hole is identical to that of the square and the rotated
square holes. Each element region of the beams has a width of a ¼ 120mm. The material properties of the
beams are as follows: modulus of the elasticity ¼ 69.0GPa, Poisson’s ratio ¼ 0.3 and a mass
density ¼ 2700 kg/m3. Water is assumed as the liquid with a density of 1000 kg/m3. The depth of the liquid
is assumed to be 50mm. In the finite element model, the three-dimensional liquid domain is assumed to have
the same width as the beam and to be laterally bounded by the rigid walls. The perforated beams have eight
holes in series, as shown in Fig. 2; three patterns of holes, the square, the rotated square, and the circular
holes, are considered. Additionally the natural frequencies and the mode shapes of the solid beam in air and in
contact with a liquid are also presented for reference. In the finite element analysis model, the liquid region is
divided into a number of liquid elements with eight nodes. On the other hand, we have modeled the perforated
beams as deformable shell elements with four nodes. The solid beam is divided into 4608 (192� 24) elastic
shell elements (SHELL63) and the liquid region is divided into three-dimensional contained liquid elements
with a number of 27648 (192� 24� 6). For the perforated beams, the division of elements was carried out by
an automatic mesh generation with an element size of 5mm. Finite element analysis by using the commercial
computer code ANSYS (version 9.0) was performed to verify the theoretical results for the three patterns of
the beam in a dry condition, and for the square pattern in a wet condition. The nodes, which are connected
entirely by the liquid elements, are free to move arbitrarily in a three-dimensional space, with the exception of
those, which are restricted to a motion in the axial direction along the bottom surface of the liquid cavity. The
lateral constraint for the liquid at y ¼ 0, b is a zero displacement in order to impose a two-dimensional beam
model. The liquid surface at the holes is imposed to have a zero vertical displacement; this is only an artificial
constraint for approximating actual applications. The effects of constraint on the liquid surface at the holes
are discussed in Section 3.4. The vertical displacement of the liquid nodes along the wetted beam surface
coincides with the corresponding displacement of the beam, which realizes Eq. (27). In the finite element
analysis, some torsional modes are detected, but this paper deals with a bending vibration only.

Table 1 shows the natural frequencies of the perforated and the solid beams in air, and it is easy to check the
accuracy of the natural frequencies by comparing the theoretical results with the corresponding finite element
analysis ones. While the natural frequencies of the solid beam obtained by the theory are underestimated by
the finite element analysis results, the natural frequencies of the perforated beams obtained by the theory are
slightly overestimated by the finite element analysis results. As can be seen, the results from the perforated
beam theory agree quite well with the finite element analysis solution. The largest discrepancy between
the theoretical and the FEM results for the perforated beams is 9.8% among the lowest 8 modes, and 9.5%
for the solid beam. It is observed that the shape effect of the holes on the natural frequencies in the
lower modes is insignificant as shown in Table 1. Fig. 3 shows the dry mode shapes of the perforated beams
Table 1

Natural frequencies of a solid beam and perforated beams with a simply supported boundary condition in air

Mode Natural frequency (Hz)

Solid beam Perforated beam

Square holes Rotated square holes Circular holes

Theory ANSYS Theory ANSYS Theory ANSYS Theory ANSYS

1 12.4 12.5 11.7 10.7 11.5 10.4 11.4 10.9

2 49.8 49.9 46.7 42.8 46.1 41.7 45.6 43.8

3 111.9 112.7 104.6 96.4 103.7 94.3 103.0 99.0

4 199.0 201.1 184.4 172.0 184.8 168.8 184.1 176.9

5 310.9 315.3 285.9 269.7 290.1 265.8 289.8 278.1

6 447.7 455.6 410.3 389.7 420.4 386.2 421.2 403.5

7 608.4 622.0 563.3 530.5 576.5 530.9 579.7 553.4

8 795.9 814.5 772.9 752.6 737.7 694.4 766.6 751.8



ARTICLE IN PRESS

Fig. 3. Bending mode shapes of the perforated beams in air (finite element analysis results).
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obtained by using the finite element analysis. Fig. 4 illustrates some deviations of the perforated beam
with the square holes from the dry mode shapes of the solid beam obtained by the theory. The mode shapes of
the solid beam in air are indicated by dashed lines and the mode shapes of the perforated beam with
square holes are delineated by solid lines. Especially, large deviations can be detected in the 6th, 7th, 9th
and 10th modes, since the mode shapes cannot coincide with the arrangement of the holes. On the other
hand, the 8th mode shape of the perforated beam almost coincides with that of the solid beam because
the number of holes is eight. The natural frequencies of the perforated beam in contact with water are
listed in Table 2. It is observed that the theoretical natural frequencies of the beam with the square holes
agree well to the finite element results within a range of 2.8% deviation for the lowest 8 modes. Fig. 5
shows the wet mode shapes of the perforated beam with square holes computed by using the finite
element analysis for the three cases with different constraints. In fact, as a consequence, the liquid
has boundary surfaces with a zero pressure at x ¼ 0, L, but no displacement constrains, therefore a liquid
volume change due to a beam vibration is compensated with a liquid movement at the liquid boundary
of x ¼ 0, L.
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1st mode 2nd mode

3rd mode 4th mode

5th mode 6th mode

7th mode 8th mode

9th mode 10th mode

Fig. 4. Theoretical mode shapes of a perforated beam with square holes in air. (———–; perforated beam with square holes, – – – – –; solid

beam).

Table 2

Natural frequencies of a solid beam and a perforated beam in contact with water

Mode Natural frequency (Hz)

Solid beam Perforated beam

Square holes Rotated square holes Circular holes

Theory ANSYS Theory ANSYS Theory Theory

1 1.05 0.95 0.99 1.02 0.97 0.96

2 8.20 8.05 7.70 7.86 7.58 7.51

3 26.7 26.2 24.9 25.2 24.7 24.5

4 60.4 59.6 55.8 56.3 55.9 55.7

5 111.9 110.7 102.4 103.0 104.0 103.8

6 182.7 181.4 166.4 166.0 170.8 171.0

7 273.6 272.2 251.4 244.7 257.9 259.2

8 385.0 383.8 373.4 383.6 355.4 370.0

K.-H. Jeong, M. Amabili / Journal of Sound and Vibration 298 (2006) 404–419 413
3.2. Effects of a hole size and shape

Fig. 6 shows the changes of the normalized natural frequencies of the perforated beam with square holes as
a function of the hole size. The normalized natural frequency is defined as the natural frequency of a
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Fig. 5. Wet mode shapes of the perforated beam with square holes (finite element analysis results): (a) vertically constrained case at the

liquid surface of the holes, (b) rigid tube inserted case at the holes of the beam and (c) free surface case at the holes of the beam.
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perforated beam in air divided by the corresponding natural frequency of a solid beam. The hole size effect of
the dry beams on the natural frequencies is not considerable, since the holes of the beams reduce not only the
mass but also the stiffness. However, as illustrated in Fig. 6, the normalized natural frequencies are gradually
reduced with an increase of the hole size except for the 8th mode, which is a particular case. That is to say, the
ligament of the beams corresponds to the antinodes location of the mode shape. Hence, the ligaments with the
maximum cross-sectional area bear the maximum bending moments of the beam. Eventually, the stiffness
reduction is not considerable when compared with the mass reduction for the 8th mode. For the wet case, the
normalized natural frequencies of the perforated beam with square holes in contact with a liquid are illustrated
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Fig. 5. (Continued)
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in Fig. 7 as a function of the hole size. It shows that the normalized natural frequencies of the perforated beam
with square holes in contact with a liquid decrease also with the holes size, except for the 8th mode, in the same
manner. However, in some cases, the opposite results were observed in an experiment by Jeong et al. [8],
because the liquid-contacting area is reduced and it decreases the added mass on the beam. Therefore, it seems
that the boundary conditions and the depth of a liquid also considerably affect the wet natural frequencies.

3.3. Effect of a liquid depth

The effect of a liquid depth on the natural frequencies of a perforated beam in contact with a liquid is
investigated here. Fig. 8 shows the normalized natural frequencies obtained by a theoretical calculation, where
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Fig. 5. (Continued)
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a normalization of the natural frequency is carried out with respect to the natural frequency of a
perforated beam in contact with water, with an infinite depth. The normalized natural frequency increases
with an increase of the liquid depth regardless of the mode numbers. Eventually, the normalized
natural frequencies converge to the result of an infinite liquid depth case. The fluid depth reduction
significantly affects the coupled natural frequencies when the liquid depth H is small enough, as depicted in
Fig. 8. At higher modes, the effect of the liquid depth on the natural frequency is significantly reduced with an
increase of the liquid depth, since the liquid at higher modes only moves near the beam. Generally, the
reduction of the liquid depth tends to enlarge the hydrodynamic coupling effect and decrease the natural
frequencies.
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Fig. 6. Hole size effect on the normalized natural frequencies of the perforated beam with square holes in air.
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Fig. 7. Hole size effect on the normalized natural frequencies of the perforated beam with square holes in a wet condition.
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Fig. 8. Water depth effect on the normalized natural frequencies of the perforated beam with square holes.

Table 3

Effect of a liquid constraint at the holes on the natural frequencies of the perforated beam with square holes (finite element analysis results)

Mode Natural frequency (Hz)

Vertically constrained case Rigid tubes inserted case Free surface case

1 1.02 0.78 5.00

2 7.86 5.76 19.6

3 25.2 18.7 45.5

4 56.3 42.6 83.8

5 103.0 79.7 135.9

6 166.0 130.8 202.6

7 244.7 193.3 282.3

8 383.6 372.5 446.9
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3.4. Effect of liquid constraints at the holes

Table 3 shows the changes of the natural frequencies in accordance with different constraints on the liquid
at the holes. In the vertically constrained case it is assumed that the liquid at the holes cannot move in the
vertical direction but can only move laterally. The rigid tube inserted case simulates the beam penetrated by
rigid rectangular tubes in a row; therefore no liquid is presented in the hole area from the top surface to the
bottom. As the free surface case indicates that in the case of the perforated beam with free surfaces of
the liquid at the holes and without any restrictions at the holes, the liquid can move in any direction. The
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constraints at the holes of the beam reveal large differences in the natural frequencies, as depicted in Table 3. It
shows that the rigid tubes inserted case has the lowest natural frequencies, since the restriction of the liquid
flow due to the rigid tubes increases the hydrodynamic mass during a vibration, and at the same time it
increases the length of the liquid flow path. The free surface case has the highest natural frequencies since the
hydrodynamic mass is relatively small due to a flow out through the holes of the beam. Unfortunately, it is so
complicated that we cannot formulate a theory for these two cases, i.e. for the free surface and the rigid tube
inserted cases. Hence, the results of Table 3 are based on the finite element analysis.

4. Conclusions

A theoretical study on the free vibration of perforated beams coupled with an ideal liquid is performed. In
order to consider the distributed mass and the stiffness of the perforated beams, the Rayleigh–Ritz method is
used. The proposed analytical method is verified by the three-dimensional finite element analysis with a good
agreement. It is found that the hole size tends to reduce the natural frequencies for all the mode numbers, and
the effect of the hole shape on the natural frequencies is insignificant for the dry condition. On the contrary, it
is observed that the natural frequencies of the perforated beam in contact with water increase with the hole
size because the liquid-contacting area reduction decreases the added mass on the beam. The fluid depth
reduction decreases the coupled natural frequencies of the perforated beams when the liquid depth is small
enough.
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